Nilai Ekivalensi

Nilai Ekivalensi

Nilai ekivalensi adalah nilai uang yang berbeda pada waktu yang berbeda akan tetapi secara finansial mempunyai nilai yang sama. Kesamaan nilai finansial tersebut dapat ditunjukkan jika nilai uang dikonversikan (dihitung) pada satu waktu yang sama.
Berikut adalah Istilah-istilah yang digunakan dalam analisa ekivalensi :
Pv           = Present Value (Nilai Sekarang) adalah  jumlah uang/modal pada saat sekarang    
Fv           = Future Value (Nilai yang akan datang)  adalah jumlah uang/modal pada masa mendatang
An          = Anuity adalah jumlah uang/modal pada masa mendatang
I               = Bunga (i = interest / suku bunga) adalah tingkat suku bunga per periode
n             = Jumlah periode bunga Tahun ke-
P0           = pokok/jumlah uang yg dipinjam/dipinjamkan pada periode waktu
SI            = Simple interest dalam rupiah
1)      Present Worth Analysis
Nilai sejumlah uang pada saat sekarang yang merupakan ekivalensi dari sejumlah Cash Flow (aliran kas) tertentu pada periode tertentu dengan tingkat suku bunga (i) tertentu.

Kegunaan
Untuk mengetahui analisis sejumlah uang pada waktu sekarang


Berapa modal P yang harus diinvestasikan pada saat sekarang (t=0), dengan tingkat suku bunga (i) %, per tahun, sehingga pada akhir n periode didapat uang sebesar F rupiah.
Rumus:
                              P = F 1/(1+i)N     atau   P = F (P/F, i, n)


Contoh:
Seseorang memperhitungkan bahwa 15 tahun yang akan datang anaknya yang sulung akan masuk perguruan tinggi, untuk itu diperkirakan membutuhkan biaya sebesar Rp 35.000.000,00. Bila tingkat bunga adalah 5 %, maka berapa ia harus menabungkan uangnya sekarang?
Jawab:
F = 35.000.000,00 ; i = 5 % ; n = 15
P = (35.000.000) (P/F, 5, 15)
   = (35.000.000) (0,4810)
   = Rp 16.835.000,00
              


             
2)      Future Worth Analysis
Nilai sejumlah uang pada masa yang akan datang, yang merupakan konversi dari sejumlah aliran kas dengan tingkat suku bunga tertentu.

Kegunaan
Untuk mengetahui analisis sejumlah uang pada waktu yang akan datang


              Bila modal sebesar P rupiah diinvestasikan sekarang (t = 0), dengan tingkat bunga i %, dibayar per periode selama n periode, berapa jumlah uang yang akan diperoleh pada periode terakhir?
Rumus:
                              F = P (1+i)N   atau  F = P (F/P, i, n)

Contoh:
              Seorang pemuda mempunyai uang sebesar Rp 20.000.000, di investasikan dibank 6 % dibayar per periode selama 5 tahun. Berapakah jumlah uang yang akan diperoleh setiap tahunnya ?
Jawab:
P = Rp 20.000.000,00; i = 6 % ; n = 5
F = P (1+i)N
   = Rp 20.000.000 (1 + 0,06)5
Atau
F = P (F/P, i, n)
   = (Rp 20.000.000) X (1,338)
   = Rp 26.760.000,00




3)      Annual Worth Analysis
Sejumlah serial Cash Flow (aliran kas) yang nilainya seragam setiap periodenya. Nilai tahunan diperoleh dengan mengkonversikan seluruh aliran kas kedalam suatu nilai tahunan (anuitas) yang seragam.

Kegunaan
Untuk mengetahui analisis sejumlah uang yang nilainya seragam setiap periodenya (nilai tahunan)

              Agar periode n dapat diperoleh, uang sejumlah F rupiah, maka berapa A yang harus dibayarkan pada akhir setiap periode dengan tingkat bunga i % ?
Rumus:
                              A = i / (1 + i )N – 1  atau  A = F ( A/F, i, n)


Contoh:
              Tuan sastro ingin mengumpulkan uang untuk membeli rumah setelah dia pensiun. Diperkirakan 10 tahun lagi dia pensiun. Jumlah uang yang diperlukan Rp 225.000.000,00. Tingkat bunga 12 % per tahun. Berapa jumlah uang yang harus di tabung setiap tahunnya ?
Jawab:
F = Rp 225.000.000 ; i = 12 % ; n = 10
A = F (A/F, i, n)
    =  (Rp 225.000.000) X (A/F, 12 %, 10)
    = (Rp 225.000.000) X (0,0570)
    = Rp 12.825.000




4)      Gradient
Pembayaran yang terjadi berkali-kali tiap tahun naik dengan kenaikan yang sama atau penurunan yang secara seragam.

Kegunaan
Untuk pembayaran per periode kadang-kadang tidak dilakukan dalam suatu seri pembayaran yang besarnya sama tetapi dilakukakn dengan penambahan /pengurangan yang seragam pada setiap akhir periode.

Rumus:
                              A = A1 + A2
                      A2 = G (1/i - n / (1 + i)n - 1)
                            = G (A/G, i, n)

Keterangan:
A          = pembayaran per periode dalam jumlah yang sama
A1        = pembayaran pada akhir periode pertama
G          = “Gradient” perubahan per periode
N          = jumlah periode

Contoh:
              Seorang pengusaha membayar tagihan dalam jumlah yang sama per periode. Perubahan per periode dengan jumlah uang sebesar Rp 30.000.000 selama 4 tahun. Dengan bunga sebesar 15 % per tahun. Berapa jumlah pembayaran pada akhir tahun pertama?
Jawab:
A2        = G (A/G, i, n)
              = Rp 30.000.000 (A/G, 15 %, 4)
              = Rp 30.000.000 (0,5718)
              = Rp 17.154.000




5)      Interest Periode
Interval waktu yang dijadikan dasar dalam perhitungan bunga. Biasanya dalam perhitungan bunga digunakan periode satu tahun (annually), ½ tahun (semi annually), atau bulanan (monthly)

Metode Ekivalensi
Adalah metode yang digunakan dalam menghitung kesamaan atau kesetaraan nilai uang waktu berbeda.
Nilai ekivalensi dari suatu nilai uang dapat dihitung jika diketahui 3 hal :
1)      Jumlah uang pada suatu waktu
2)      Periode waktu yang ditinjau
3)      Tingkat bunga yang dikenakan

Contoh kasus dan penyelesaian pada masing - masing istilah tersebut
Seseorang memperhitungkan bahwa 15 tahun yang akan datang anaknya yang sulung akan masuk perguruan tinggi, untuk itu diperkirakan membutuhkan biaya sebesar Rp 35.000.000,00. Bila tingkat bunga adalah 5 %, maka berapa ia harus menabungkan uangnya sekarang?
Jawab:
F              = 35.000.000,00 ; i = 5 % ; n = 15
P              = (35.000.000) (P/F, 5, 15)
    = (35.000.000) (0,4810)
    = Rp 16.835.000,00

Contoh ekivalensi nilai tahunan
Rumus:
A = i / (1 + i )N – 1   atau A = F ( A/F, i, n)

Contoh:
Tuan sastro ingin mengumpulkan uang untuk membeli rumah setelah dia pensiun. Diperkirakan 10 tahun lagi dia pensiun. Jumlah uang yang diperlukan Rp 225.000.000,00. Tingkat bunga 12 % per tahun. Berapa jumlah uang yang harus di tabung setiap tahunnya ?
Jawab:
F              = Rp 225.000.000 ; i = 12 % ; n = 10
A             = F (A/F, i, n)
    = (Rp 225.000.000) X (A/F, 12 %, 10)
    = (Rp 225.000.000) X (0,0570)
    = Rp 12.825.000

Contoh ekivalensi nilai sekarang
Sebuah perusahaan akan membeli sebuah mesin untuk meningkatkan pendapatan tahunannya. Dua alternatif peralatan masak dengan usia pakai masing-masing 8 tahun ditawarkan kepada perusahaan:
Mesin
Harga beli (Rp.)
Keuntungan per tahun (Rp.)
  Nilai sisa di akhir usia pakai (Rp.)
       2.500.000       
750.000          
1.000.000
Y  
      3.500.000
900.000          
1.500.000
Dengan tingkat suku bunga 15% per tahun, tentukan mesin mana yang seharusnya dibeli.
Penyelesaian:
Mesin X :
NPVX = 750.000(P/A,15%,8) + 1.000.000(P/F,15%,8) – 2.500.000
NPVX = 750.000(4.48732) + 1.000.000(0,32690) – 2.500.000
NPVX = 1.192.390
Mesin Y :
NPVY = 900.000(P/A,15%,8) + 1.500.000(P/F,15%,8) – 3.500.000
NPVY = 900.000(4.48732) + 1.500.000(0.32690) – 3.500.000
NPVY = 1.028.938
Maka, pilih mesin X




Komentar

Postingan populer dari blog ini

FLOWCHART / DIAGRAM ALIR TEMPAT SAMPAH PINTAR BERBASIS ARDUINO UNO

RANGKAIAN DEMODULATOR FM

Rangkaian modulator FM